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A mathematical model is derived to describe the transient behavior of a continuous stirred tank 
reactor containing catalyst particles with a bipore distribution when a stimulus is introduced. The 
reaction taking place inside the catalyst is assumed to be isothermal, first order, and irreversible. 
The expressions for the zeroth-, first-, and second-order moments of the response curve are given in 
terms of the adsorption equilibrium constant, the intercrystalline and intracrystalline diffusion 
coefficients, and the first-order reaction rate constant. A method for the determination of these 
parameters is presented. The same method also leads to the determination of micro- and macropore 
effectiveness factors. 

INTRODUCTION 

When catalysts are used in pelletized 
forms, they sometimes exhibit a bidistribu- 
tion of pores. For example, pelletized zeo- 
lites exhibit a bipore distribution because 
they contain both a micropore structure 
within the crystals and a macropore struc- 
ture between crystals. Consequently, there 
will be an intracrystalline pore diffusion 
within the well-structured micropores and 
an intercrystalline diffusion in the randomly 
distributed macropores. Knowledge of the 
relative importance of these diffusion rates 
as compared to the sorption and reaction 
rates simultaneously taking place in the 
catalysts can be of importance in interpret- 
ing the experimental data and improving 
engineering design of catalytic conversion 
units. 

The pioneering works of Damkohler ( f ), 
Thiele (2), Zeldovitch (3), and Wagner (4) 
on reaction and mass transfer started a new 
approach to the analysis of heterogeneous 
catalysis which led to the concept of effec- 
tiveness of a porous catalyst. The general 
approach has been discussed by mathemat- 
ically modeling mass transfer in the pres- 

ence of a reaction as described by various 
authors (5-7). Schilson and Amundson (8) 
presented methods to predict the rates of 
reaction from a single porous catalyst, as- 
suming that the reaction kinetics were 
known and that Knudsen diffusion oc- 
curred in the pores. Smith and co-workers 
(9-1 I) considered the interaction of physi- 
cal transfer processes and chemical reac- 
tion in porous pellets for isothermal and 
nonisothermal conditions. They also inves- 
tigated the possible significance of surface 
diffusion on catalytic activity. A similar 
study was done by Foster and Butt (12). 

A convenient way of obtaining “clean” 
reaction rate data is to use a continuous 
stirred tank reactor (CSTR). Because of the 
high recirculaton rate in the reactor, it can 
be operated isothermally and external mass 
transfer resistance from the fluid phase to 
the catalyst can be minimized. These reac- 
tors were used in transient operations to 
investigate kinetics and diffusional effects 
in catalytic reactions (13-18). Relya and 
Perlmutter (18) presented experimental and 
analytical investigations on the characteris- 
tics of a well-stirred reactor with a porous 
catalyst wall for the ethylene hydrogena- 
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tion reaction. In their approach Balder and 
Petersen (19, 20) and Hegedus and Peter- 
sen (21, 22) studied the transient operation 
of a single-pellet reactor. Suzuki and Smith 
(23) provided a method to measure diffu- 
sion coefficients and adsorption equilibrium 
constants using one catalyst pellet, whereas 
Furusawa and Smith (24) presented a math- 
ematical and experimental investigation on 
mass transfer rates in a well-stirred slurry 
by chromatography. Finally, Kelly (25) de- 
scribed sorption, diffusion, and reaction 
phenomena in a continuous stirred catalytic 
reactor containing a slab-shaped catalyst. It 
should be noted that most of these studies 
assumed a single-pore distribution in the 
catalyst. 

The objective of the present study is to 
derive a model to describe the transient 
behavior of a continuous stirred tank reac- 
tor containing spherical catalyst pellets 
with a bipore distribution. The model in- 
cludes a first-order irreversible chemical 
reaction with intraparticle and interparticle 
diffusion and adsorption. The model is then 
used to derive the equations for the mo- 
ments of the response curve to a stimulus. 
By comparing the experimentally deter- 
mined moments to those predicted from the 
model, the rate parameters and the micro- 
pore and macropore effectiveness factors 
can be evaluated. 

BASIC EQUATIONS FOR SPHERICAL 
CRYSTALS WITH MICROPORES 

A simplified diagram of the continuous 
stirred catalytic reactor is given in Fig. 1. 
Microporous crystals are placed in the re- 
actor and rotated at high speed. In the 
derivation of the mathematical model, it is 
assumed that: 

1. The crystals are spherical and uniform 
in size. 

2. The gas-phase concentration in the 
reactor and around the crystals is well 
mixed and uniform. 

3. The intracrystalline diffusion can be 

I Fluid phase , ) Y  (11 

Cota& phase, Ca(tl,CXtj,Csiit) 

FIG. 1. Simplified diagram of the CSTR. 

described by Fick’s equation and the diffu- 
sion coefficient is constant. 

4. An irreversible first-order reaction oc- 
curs within the micropores and the process 
is isothermal. 

5. The adsorption isotherm is linear and 
adsorption equilibrium is attained at the 
boundary surface of the crystals. 

With these assumptions, the differential 
equations describing the concentrations at 
the surface of the micropores and inside the 
pores are 

- k, (ci - 2) = 2, (2) 
P 

where K, = l i K,/A" and Di = Deff,Jei. 
The initial and boundary conditions are 

csi (ri, 0) = 0, 

2 (0, f) = 0, 
I (3) 

ci cRi, t) = C(f), 

Cf (Tit 0) = 0. 

A mass balance for the fluid phase in the 
reactor gives 
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dY 
V dt = F(X - r) - Di4nRi2nEi 

dC. -.-A 
dri T,=R~ 

(4) 

with the initial condition 

Y(0) = 0. 

After defining the new variables 

Pi = ri/Ri, 

ti = 5i (Pi9 f) = Ciri 

and applying the Laplace transform tech- 
nique, the solution of Eqs. (l), (2), and (4) 
with associated boundary conditions in the 
Laplace domain is given by 

4dPi7 s, = 
F(S) Ri sinh CX(S)P, 

sinh (Y(S) 
(S) 

with 

ka2 l/2 

S+k,- 
K,S + K,k, + k, ’ 

Thus, the transfer function Hi(s) takes the 
form 

H,(S) = [ 1 + TS + 2TifZi$ 
I 

(a(S) coth (Y(S) - I)]-’ (6) 

with 

fw) = Rwm>, (7) 

T = V/F, 

T*=~=n!?%, 

BASIC EQUATIONS FOR SPHERICAL PELLETS 
WITH A BIPORE DISTRIBUTION 

(MICROPORES AND MACROPORES) 

A schematic diagram of a pellet contain- 
ing both micropores and macropores is 
shown in Fig. 2. In addition to the assump- 
tions made previously for single-pore pel- 
lets, the following assumptions are made: 

Crystal 
\ 

Mocmpore 
\ \ 

Micropore 

FIG. 2. Schematic diagram of the cross section of the 
pellet. 

1. The spherical catalyst pellets are as- 
semblies of small microporous spherical 
crystals of uniform size. 

2. Both intercrystalline and intracrystal- 
line diffusion processes can be described by 
Fick’s equation with constant diffusion 
coefficients. 

3. The first-order, irreversible chemical 
reaction occurs only in the micropore re- 
gion. 

With these assumptions, in addition to 
Eqs. (1) and (2) describing the concentra- 
tion changes within the microporous re- 
gion, the differential equation describing 
the concentration changes within the mac- 
roporous region is 

+ 3Ei (1 - E,) Di 3Ci -- 
Ri ari ri=RL 

(8) 
Ea 

with D, = Def,Je,. 
The differential equation for the fluid 

phase in the well-mixed reactor is 

v g = F(X - Y) 

ac, - N~TTR,~E,D,~ . 
I 

(9) 
ra=R, 

The boundary and initial conditions for 
Eqs. (0, (3, (81, and (9) are 
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and the transfer function H,(S) takes the 
form 

(10) f4,(S) = [ I + TS + 37. E. 3 
“ Cl R;,Z 

(P(S) cothP(S) - I)]+ (14) 

and 

2 (0, t) = 0, 
a 

Ca CR,, f) = Y(t), (11) 
c, (ray 0) = 0, 

Y(0) = 0. 

After defining new variables 

Pa = j$ 

5a = 5, (Pa, t) = ca @a, 0 ra 
and applying the Laplace transform tech- 
nique, the solution to Eqs. (l), (2), (8), and 
(9)) subjected to boundary conditions (10) 
and (ll), is 

with 

a(S) = 

($2 k,2 112 

s + k, - 
K,S + K,k, + k, 

and 

t 
a 

b 
a, 

s) = &Q Ra sinh P(S) pa cl3j 
sinh p(S) 

with PC-9 = & c S + 3Ei (I - EJ Di 

Ea 
2 
Ri 

4rrR 3 %!-N a 7a=-- F 3F * (15) 

If reactant is injected into the reactor as a 
unit impulse 6(t), the solution for @lcs) is 
obtained by replacing J?(S) by 1 in Eqs. (7) 
and (15). Since the transfer functions are 
too complex to be inverted, the moments of 
the response curve to a unit impulse are 
obtained. 

MOMENTS OF THE RESPONSE CURVE 

The nth moment of a function y(r) is 
given by 

t&a = i If Py(t) dt. (16) 
0 

The IZ th normalized moment is 

p, = b!z = i x t"y(t) dt 
0 

PO 
i m ~(4 dt 

(17) 

0 

and the II th normalized central moment is 

i m 0 - /O ~(4 dt 
/&= 0 

s m  ~0) df 
(18) 

0 

The moments of the functions y(t) are 
related to their Laplace transform &S) by 

lim d7* Y(S) 

(a(S) coth a(S) - I))“‘, For a unit impulse 

X(S) = I. 

Therefore, when the reactor contains 
ka2 “’ 

+ ka - K,S + K,k, + k, > 
particles with micropores only, Eq. (7) be- 
comes 
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Y(S) = Hi(S)* 

If one defines 

SCHOBERT AND MA 

(19) 

1 
IV) = f&(S) 

and 

I = Z(O), 

1’ = as) 
-YE- ’ s=o 

r’ = d2K% 
dS2 s=o 

then 
1 

RN = Z(S) 

and the zeroth, normalized first, and sec- 
ond central moments take the forms 

/J,o = I-‘, 

/il = Z’/Z, (20) 

zr2 r 
tL2= r -7 0 

When the reactor contains pellets with 
both micropores and macropores, Eq. (15) 
becomes 

P(S) = H,(S). (21) 

If one defines 

1 
J(s) = H,(S) 

J = J(O), 

J’ = dJ@) 
dS ’ s=o 

s’ = d2J@) 
dS2 s=o 

then 

(22) 

and the zeroth-, first-, and second-order 
moments take the same form as in Eqs. (20) 
with I, I’, and I” replaced by J, J’ , and J”, . _ 

The zeroth-order moment represents the 
amount of unreacted reactant leaving the 
reactor. Therefore, Eqs. (23) and (24) show 
the effect of adsorption, diffusion, and reac- 
tion on the conversion in the reactor. When 

respective1 y. there is no chemical reaction, I, J, and the 

It should be noted that Z and J may be 
regarded as the characteristic functions for 
microporous and biporous pellets, respec- 
tively. Instead of impulse perturbation, it is 
also possible to employ a square-wave in- 
put. The derivation for a square-wave input 
is given in (26) but the expressions for the 
moments are quite complex and depend on 
the duration of the square wave. 

In order to utilize the moment technique 
for the determination of the parameters 
describing the sorption, diffusion, and reac- 
tion rate phenomena, it is necessary to 
relate the characteristic functions to these 
parameters. However, this, in general, 
results in rather complex equations (26). 
Therefore, only the cases when equilibrium 
adsorption occurs (ZC, + x) are considered. 
Only the final results are given here and 
detailed derivations can be found in Scho- 
bet-t (26). 

The zeroth moment is obtained using the 
characteristic functions Z and J: 

Z = 1 + TjEiKakS7)iy (23) 

J = 1 + TaEi ( 1 - 4 Kakqiqa, (24) 

7)i = $ (+i COth +i - I), (23a) 

+i = (WK/s)1’2, (23b) 
I 

77, = $ (4; coth 4; - 1) 7 GW 
a 

R 2K k +; = [ aD a s (24b) 
a 

f(lc, Ea)1)1)]1’2. 

qi and qa can be regarded as microeffec- 
tiveness and macroeffectiveness factors, 
respectively, for a first-order reaction in 
spherical particles, expressed in terms of 
modified Thiele’s moduli +i and r#~:. 
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zeroth-order moment are equal to unity as 
expected for a unit impulse perturbation. 

The first-order moment is related to the 
parameters through I’ and J’, where 

I’ = 7 + 4 TiEi( 1 + K,)M(C#Bj), (25) 

J’ = T + ; T,E, 1 + ; 
[ 

Ei(l ET Ea) (1 + X,)M(Qi)]M(4J). (26) 
d 

M($i) and M(&) are hyperbolic functions 
such that 

M(+) = (Gosh Msinh 4) - 4 
4 sinhZ C#J * (27) 

In the absence of a reaction (k, = O), the 
normalized first-order moments become 

V + Viei(l + K,) 
I 

= T + TiEi(I + K,) (28) 

for microporous crystals, and 

[v+%A(l+ Ei(1 - E&(1 + K,) E, )] 
= 7 f T,E, + T,Ei( I - ~a)( 1 + K,) (29) 

for biporous pellets. 
In this case, the first-order moment is 

independent of the diffusional process and 
is only a function of the geometry of the 
system (V, Vi, v,, Ei, E,), the adsorption 
equilibrium constant K,, and the flow rate 
F. This result is similar to that obtained in a 
chromatographic column (27). ii1 is the 
total mean residence time of the reactant in 
the reactor and in the zeolite. T is the 
residence time in the gaseous phase of the 
reactor, while TiEi (or T,Ei (1 - E,) for pel- 
lets) and T,E, are the residence times in 
micropores and macropores, respectively. 
For the case of an empty reactor 
(Vi = U, = O), the normalized first-order 
moment is equal to T which is the response 
of a continuous stirred reactor of volume V 
and flow rate F to an impulse input. 

The second-order moment is related to 
the parameters through I” and .Z”, where 

3 vi Ri2 
(30) 

J” = z 4 Ei( 1 - EJ( 1 + KJ2 ‘& N(+JM(+A) 
1 

2 3 E R,2 - + 1 + 3 4 1 ~a)( 1 + K,) 
4F “II, 2 % 

M(Ci)]2N(&), (31) 

where 

N(4) = 2@ cash 4 - $I sinh 4 - cash 4 sinh2 C#J. 
+3 sinh3 C$ 

As can be seen from Eq. (31) J” is the approach finite values. As a result, T1 and 
sum of two terms T1 and T2. In the presence T2 represent diffusional resistances from 
of a chemical reaction, the ditfusional pro micropores and macropores, respectively. 
cesses are coupled with the reaction. More- 
over, effects of the diffusional processes in 
the micropores and macropores cannot be EVALUATION OF SORPTION, DIFFUSION, 

separated. However, in the absence of a AND REACTION RATE PARAMETERS 

reaction, M(&), N(+i), M(&), and N($J:) all Experiments should be made with micro- 
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porous crystals and also with biporous pel- mined and values, of I, I’, I”, .Z, .Z’, and J” 
lets. When the intracrystalline diffusion re- are calculated according to the above equa- 
sistance is negligible, only experiments tions. +i is calculated from Eq. (32) using a 
with pellets are necessary. In all cases, combination of Eqs. (23), (25), and (30) in 
experiments should be conducted at ditfer- conjunction with the definitions of q,, M(4), 
ent flow rates and particle sizes. The mo- and N($). 
ments of the response curve are then deter- 

Z”(Z - 1) = ($i cash $i-sinh +i)(2+i cash +i-~i sinh $+-cash $+ sinh2 +) 
(I’ - T)’ +i(COsh 4i sinh $i-$i)’ (32) 

The function F,(+) which is the right- 
hand side of Eq. (32) is plotted as a function 
of 4 in Fig. 3. Once & is obtained, r)i is 
determined from Eq. (23a). The parameter 
K, may be obtained from the slope of the 
straight line by plotting I’ versus l/F ac- 
cording to Eq. (25). A similar plot accord- 
ing to Eqs. (23) and (24) will give the values 
of k, and q,. Di can then be determined 
from 

4; is determined from Eq. (24a). The func- 

PH I 

FIG. 3. Log-log plot of function F,(4) versus 4. FIG. 4. Log-log plot of function F,(c$) versus 4. 

tion Fz($) which is the right-hand side of 
Eq. (24a) is plotted as a function of 4 in Fig. 
4. Once 4;: is obtained, D, is calculated 
from 

The procedure is thus quite simple and 
gives values of four parameters with only 
two sets of experiments, one with micropo- 
rous crystals and one with biporous pellets. 
Since both microeffectiveness and macroef- 
fectiveness factors are determined, the 
results also provide information on the im- 
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portance of intercrystalline or intracrystal- 
line diffusion relative to the other rate pro- 
cesses. The method is especially useful 
since it provides a means for the determina- 
tion of diffusion coefficients in the presence 
of a chemical reaction. The method can 
also be used for cases where one or more of 
the processes are absent. These limiting 
cases are presented in (26). 

CONCLUSIONS 

A mathematical model was developed to 
describe the transient behavior of a contin- 
uous stirred tank reactor. The model in- 
cluded a linear sorption equilibrium con- 
stant K,, a first-order reaction rate constant 
li,, an intracrystalline diffusion coefficient, 
Di, and an intercrystalline diffusion 
coefficient D,. 

Expressions for the zeroth-, first-, and 
second-order moments of the response 
curve to a unit impulse perturbation were 
given in terms of the parameters K,, k,, Di, 
andD,. It was shown that these parameters 
can be calculated from the experimental 
data. The general case is quite complicated 
but microeffectiveness and macroeffective- 
ness factors can be obtained. This allows 
one then to determine the relative impor- 
tance of intercrystalline and intracrystalline 
diffusion. Furthermore, the method can be 
used to measure intercrystalline and intra- 
crystalline diffusion under reacting condi- 
tions. 

A, 

C 

CS 

CO 

D 

DE!ff 

F 

surface area, m2 pore surface 
area/m3 pellet volume 

concentration of sorbate in gas- 
eous phase, mol/m3 

concentration of sorbed phase, 

h 
r, 
ri 

4 

Ri 

t 
V 

V 
X(t) 

Y(t) 

volume of catalyst, m3 
volume of reactor, m3 
concentration of reactant at inlet 

at time f, mol/m3 
concentration of reactant at out- 

let at time t, mol/m3 
mol/m* pore surface area 

concentration of sorbate in gas- Greek Letters 

eous phase at time 0, mol/m3 4s) parameter for crystals 
diffusion coefficient, m2/s P(S) parameter for pellets 
effective diffusion coefficient, e void volume = porosity, m3 

m*/s pore volume/m3 pellet volume 
flow rate, m3/s P moment 

1 

I’ 

I” 

J 

J 

s 

transfer function, dimensionless 
characteristic function for crys- 

tals, dimensionless 
characteristic function for crys- 

tals, evaluated at S = 0, di- 
mensionless 

first derivative of characteristic 
function for crystals evaluated 
at S = 0, s 

second derivative of characteris- 
tic function for crystals evalu- 
ated at S = 0, s* 

characteristic function for pellets 
evaluated at S = 0, dimen- 
sionless 

first derivative of characteristic 
function for pellets evaluated 
atS = 0, s 

second derivative of characteris- 
tic function for pellets evalu- 
ated at S = 0, s* 

sorption rate constant, s-l 
equilibrium constant for adsorp- 

tion, dimensionless 
first-order surface reaction rate 

constant, s-l 
KaEiIAv, equilibrium constant 

for adsorption, m3 pellet 
void/m* pore surface area 

number of crystals in CSTR 
number of pellets in CSTR 
radial distance in pellet, m 
radial distance in crystal, m 
radius of pellet, m 
radius of crystal, m 
time, s 
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5 concentration of concentration of reactant, reactant, 8. Schils-- D C --rl A-..-~“-” 8. Schilson, R. E., and Amundson, N. R., Chem. 

mol/m2 mol/m2 Big. 5 Eng. Sci. 13, 226 (1961). 

modified Thiele module modified Thiele modulus, dimen- 9. Arrowsmith, R. J., and Smith, J. M., I&. E/IX. 
. . 

sionless 
Chem. Funcium. 5, 327 (1966). 

modifie modified Thiele modulus for pel- 
lo. Krasuk, J. H., and Smith, J. M., Znd. Eng. Chem. 

Fundam. 4. 102 (1965). 
let. dimensionless 

7) effectiveness factor 
p = r/R dimensionless radial distance 
T = V/f residence time, s 

II. Shen, J., and Smith, J. M., Itrd. Eng. Chem. 
Fundam. 4, 327 (1%5). 

1-7. Foster, R. N., and Butt, J. B., I&. E/q. Chem. 
Fun&m. 6, 481 (1967). 

13. 

Subscripts 14. 

i intracrystalline or micropore or 
powder IS. 

a intercrystalline or macropore or 
pellet 16. 

S surface 17. 

Superscripts 18. 

Laplace transform of function 
normalized (moment) 
central normalized (moment) 
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